Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model.
نویسندگان
چکیده
Ion transport in biological and synthetic nanochannels is characterized by phenomena such as ion current fluctuations and rectification. Recently, it has been demonstrated that nanofabricated synthetic pores can mimic transport properties of biological ion channels [P. Yu. Apel, Nucl. Instrum Methods Phys. Res. B 184, 337 (2001); Z. Siwy, Europhys. Lett. 60, 349 (2002)]. Here, the ion current rectification is studied within a reduced one-dimensional (1D) Poisson-Nernst-Planck (PNP) model of synthetic nanopores. A conical channel of a few nm to a few hundred nm in diameter, and of a few mum long is considered in the limit where the channel length considerably exceeds the Debye screening length. The rigid channel wall is assumed to be weakly charged. A one-dimensional reduction of the three-dimensional problem in terms of corresponding entropic effects is put forward. The ion transport is described by the nonequilibrium steady-state solution of the 1D Poisson-Nernst-Planck system within a singular perturbation treatment. An analytic formula for the approximate rectification current in the lowest order perturbation theory is derived. A detailed comparison between numerical results and the singular perturbation theory is presented. The crucial importance of the asymmetry in the potential jumps at the pore ends on the rectification effect is demonstrated. This so constructed 1D theory is shown to describe well the experimental data in the regime of small-to-moderate electric currents.
منابع مشابه
Current voltage curves in synthetic conical nanopores described by a simple Poisson / Nernst Planck model
We have developed a theoretical model [1] for ionic transport through synthetic conical nanopores. The results have been compared with experiments obtained for single, goldcoated conical nanopores. The model [1] describes quantitatively the ionic transport through synthetic conical nanopores. It is based on the Poisson and Nernst-Planck (PNP) equations and allows the calculation of realistic p...
متن کاملIon Current Rectification, Limiting and Overlimiting Conductances in Nanopores
Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dep...
متن کاملRectification in synthetic conical nanopores
The theoretical description of ionic transport processes in nanoporous materials is a very interesting topic, since these materials have promising technological applications e.g. in sensing and filtration of molecules with size comparable to the pore diameter, and especially single pores may serve as model systems for biological ion channels. By the track-etching method [1], it is possible to p...
متن کاملPoisson-Nernst-Planck model of ion current rectification through a nanofluidic diode.
We have investigated ion current rectification properties of a recently prepared bipolar nanofluidic diode. This device is based on a single conically shaped nanopore in a polymer film whose pore walls contain a sharp boundary between positively and negatively charged regions. A semiquantitative model that employs Poisson and Nernst-Planck equations predicts current-voltage curves as well as io...
متن کاملRectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling
Rectifying nanopores feature ion currents that are higher for voltages of one polarity compared to the currents recorded for corresponding voltages of the opposite polarity. Rectification of nanopores has been found to depend on the pore opening diameter and distribution of surface charges on the pore walls as well as pore geometry. Very little is known, however, on the dependence of ionic rect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 77 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2008